Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58.866
1.
Rev Assoc Med Bras (1992) ; 70(4): e20230990, 2024.
Article En | MEDLINE | ID: mdl-38716935

OBJECTIVE: We aimed to investigate the effect of coenzyme q10 on cyclophosphamide-induced kidney damage in rats. METHODS: A total of 30 female Wistar-Albino rats were utilized to form three groups. In group 1 (control group) (n=10), no drugs were given. In group 2 (cyclophosphamide group) (n=10), 30 mg/kg intraperitoneal cyclophosphamide was administered for 7 days. In group 3 (cyclophosphamide+coenzyme q10 group) (n=10), 30 mg/kg cyclophosphamide and 10 mg/kg coenzyme q10 were given for 7 days via intraperitoneal route. Right kidneys were removed in all groups. Blood malondialdehyde levels and activities of catalase and superoxide dismutase were measured. Histopathological damage was evaluated by examining the slides prepared from kidney tissue using a light microscope. RESULTS: Tissue damage was significantly higher in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). The malondialdehyde levels were significantly higher and the activities of superoxide dismutase and catalase were lower in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). CONCLUSION: Coenzyme q10 may be a good option to prevent cyclophosphamide-induced kidney damage.


Catalase , Cyclophosphamide , Malondialdehyde , Rats, Wistar , Superoxide Dismutase , Ubiquinone , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Cyclophosphamide/toxicity , Cyclophosphamide/adverse effects , Female , Catalase/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/drug effects , Kidney/drug effects , Kidney/pathology , Rats , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Antioxidants/pharmacology , Oxidative Stress/drug effects
2.
PLoS One ; 19(5): e0303145, 2024.
Article En | MEDLINE | ID: mdl-38728268

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Germination , Polyethylene Glycols , Seedlings , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects , Seeds/growth & development , Dehydration , Catalase/metabolism , Malondialdehyde/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism , Water/metabolism
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731854

Factors that reduce the risk of developing colorectal cancer include biologically active substances. In our previous research, we demonstrated the anti-inflammatory, immunomodulatory, and antioxidant effects of oat beta-glucans in gastrointestinal disease models. The aim of this study was to investigate the effect of an 8-week consumption of a diet supplemented with low-molar-mass oat beta-glucan in two doses on the antioxidant potential, inflammatory parameters, and colonic metabolomic profile in azoxymethane(AOM)-induced early-stage colorectal cancer in the large intestine wall of rats. The results showed a statistically significant effect of AOM leading to the development of neoplastic changes in the colon. Consumption of beta-glucans induced changes in colonic antioxidant potential parameters, including an increase in total antioxidant status, a decrease in the superoxide dismutase (SOD) activity, and a reduction in thiobarbituric acid reactive substance (TBARS) concentration. In addition, beta-glucans decreased the levels of pro-inflammatory interleukins (IL-1α, IL-1ß, IL-12) and C-reactive protein (CRP) while increasing the concentration of IL-10. Metabolomic studies confirmed the efficacy of oat beta-glucans in the AOM-induced early-stage colon cancer model by increasing the levels of metabolites involved in metabolic pathways, such as amino acids, purine, biotin, and folate. In conclusion, these results suggest a wide range of mechanisms involved in altering colonic metabolism during the early stage of carcinogenesis and a strong influence of low-molar-mass oat beta-glucan, administered as dietary supplement, in modulating these mechanisms.


Antioxidants , Azoxymethane , Colorectal Neoplasms , beta-Glucans , Animals , beta-Glucans/pharmacology , Azoxymethane/toxicity , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/pathology , Rats , Male , Antioxidants/pharmacology , Antioxidants/metabolism , Disease Models, Animal , Avena/chemistry , Superoxide Dismutase/metabolism , Colon/metabolism , Colon/pathology , Colon/drug effects , Oxidative Stress/drug effects , Rats, Wistar , C-Reactive Protein/metabolism
4.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722391

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Antioxidants , Chlorella vulgaris , Chlorpyrifos , Cichlids , Fish Diseases , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Cichlids/metabolism , Cichlids/microbiology , Cichlids/genetics , Chlorpyrifos/toxicity , Antioxidants/metabolism , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Catalase/metabolism , Catalase/genetics , Water Pollutants, Chemical/toxicity , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oxidative Stress/drug effects , Aquaculture/methods
5.
Braz Oral Res ; 38: e042, 2024.
Article En | MEDLINE | ID: mdl-38747829

The aim of this study was to investigate the DNA methylation profile in genes encoding catalase (CAT) and superoxide dismutase (SOD3) enzymes, which are involved in oxidative stress mechanisms, and in genes encoding pro-inflammatory cytokines interleukin-6 (IL6) and tumor necrosis factor-alpha (TNF-α) in the oral mucosa of oncopediatric patients treated with methotrexate (MTX®). This was a cross-sectional observational study and the population comprised healthy dental patients (n = 21) and those with hematological malignancies (n = 64) aged between 5 and 19 years. Oral conditions were evaluated using the Oral Assessment Guide and participants were divided into 4 groups: 1- healthy individuals; 2- oncopediatric patients without mucositis; 3- oncopediatric patients with mucositis; 4- oncopediatric patients who had recovered from mucositis. Methylation of DNA from oral mucosal cells was evaluated using the Methylation-Specific PCR technique (MSP). For CAT, the partially methylated profile was the most frequent and for SOD3 and IL6, the hypermethylated profile was the most frequent, with no differences between groups. For TNF-α, the hypomethylated profile was more frequent in the group of patients who had recovered from mucositis. It was concluded that the methylation profiles of CAT, SOD3, and IL6 are common profiles for oral cells of children and adolescents and have no association with oral mucositis or exposure to chemotherapy with MTX®. Hypomethylation of TNF-α is associated with oral mucosal recovery in oncopediatric patients who developed oral mucositis during chemotherapy.


Catalase , DNA Methylation , Interleukin-6 , Methotrexate , Mouth Mucosa , Stomatitis , Superoxide Dismutase , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/genetics , Child , Cross-Sectional Studies , Adolescent , Child, Preschool , Male , Female , Young Adult , Interleukin-6/genetics , Interleukin-6/analysis , Catalase/genetics , Mouth Mucosa/drug effects , Superoxide Dismutase/genetics , Methotrexate/therapeutic use , Methotrexate/adverse effects , Stomatitis/genetics , Stomatitis/chemically induced , Promoter Regions, Genetic/genetics , Hematologic Neoplasms/genetics , Hematologic Neoplasms/drug therapy , Reference Values , Antimetabolites, Antineoplastic/adverse effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Polymerase Chain Reaction , Statistics, Nonparametric , Mucositis/genetics , Mucositis/chemically induced , Case-Control Studies
6.
Curr Genet ; 70(1): 7, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743270

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Fermentation , Lacticaseibacillus paracasei , Oxidative Stress , Polysaccharides, Bacterial , Solanum melongena , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism , Solanum melongena/microbiology , Solanum melongena/genetics , Solanum melongena/metabolism , Lacticaseibacillus paracasei/metabolism , Lacticaseibacillus paracasei/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Genome, Bacterial , Fermented Foods/microbiology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics
7.
PLoS One ; 19(5): e0297788, 2024.
Article En | MEDLINE | ID: mdl-38743661

This study was conducted to evaluate the effects of phytosterols (PS) and phytosterol esters (PSE) on C57BL/6 mice. Three groups of 34 six-week-old C57BL/6 mice of specific pathogen free (SPF) grade, with an average initial body weight (IBW) of 17.7g, were fed for 24 days either natural-ingredient diets without supplements or diets supplemented with 89 mg/kg PS or diets supplemented with 400 mg/kg PSE. Growth performance, blood biochemistry, liver and colon morphology as well as intestinal flora status were evaluated. Both PS and PSE exhibited growth promotion and feed digestibility in mice. In blood biochemistry, the addition of both PS and PSE to the diet resulted in a significant decrease in Total Cholesterol (TC) and Triglyceride (TG) levels and an increase in Superoxide Dismutase (SOD) activity. No significant changes in liver and intestinal morphology were observed. Both increased the level of Akkermansia in the intestinal tract of mice. There was no significant difference between the effects of PS and PSE. It was concluded that dietary PS and PSE supplementation could improve growth performance, immune performance and gut microbiome structure in mice, providing insights into its application as a potential feed additive in animals production.


Dietary Supplements , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Phytosterols , Animals , Phytosterols/pharmacology , Phytosterols/administration & dosage , Gastrointestinal Microbiome/drug effects , Mice , Liver/metabolism , Liver/drug effects , Esters/pharmacology , Male , Cholesterol/blood , Triglycerides/blood , Animal Feed/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase/blood
8.
PLoS One ; 19(5): e0303136, 2024.
Article En | MEDLINE | ID: mdl-38743689

Superoxide dismutase (SOD) is an antioxidant enzyme that protects the body from free radicals. It has both antioxidant and immunomodulatory properties, inducing macrophage polarization from M1 to M2. Macrophages, key mediators of the innate immune response, are divided into the M1 (pro-inflammatory) and M2 (anti-inflammatory) subtypes. In this study, we aimed to assess the antioxidant and neuroprotective effects of SOD on nerve cells and its immunomodulatory effects on macrophages. We observed that SOD inhibited the accumulation of reactive oxygen species and enhanced the viability of H2O2-treated nerve cells. Furthermore, SOD reduced the degree of necrosis in nerve cells treated with the conditioned medium from macrophages, which induced inflammation. In addition, SOD promoted the M1 to M2 transition of macrophages. Our findings suggest that SOD protects nerve cells and regulates immune responses.


Macrophages , Neuroprotective Agents , Reactive Oxygen Species , Superoxide Dismutase , Animals , Superoxide Dismutase/metabolism , Mice , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Humans , Neuroprotective Agents/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Neuroblastoma/immunology , Neuroblastoma/pathology , Cell Line, Tumor , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Antioxidants/pharmacology
9.
J Nanobiotechnology ; 22(1): 246, 2024 May 13.
Article En | MEDLINE | ID: mdl-38735970

Excessive production of reactive oxygen species (ROS) and inflammation are the key problems that impede diabetic wound healing. In particular, dressings with ROS scavenging capacity play a crucial role in the process of chronic wound healing. Herein, Zr-based large-pore mesoporous metal-organic frameworks (mesoMOFs) were successfully developed for the construction of spatially organized cascade bioreactors. Natural superoxide dismutase (SOD) and an artificial enzyme were spatially organized in these hierarchical mesoMOFs, forming a cascade antioxidant defense system, and presenting efficient intracellular and extracellular ROS scavenging performance. In vivo experiments demonstrated that the SOD@HMUiO-MnTCPP nanoparticles (S@M@H NPs) significantly accelerated diabetic wound healing. Transcriptomic and western blot results further indicated that the nanocomposite could inhibit fibroblast senescence and ferroptosis as well as the stimulator of interferon genes (STING) signaling pathway activation in macrophages mediated by mitochondrial oxidative stress through ROS elimination. Thus, the biomimetic multi-enzyme cascade catalytic system with spatial ordering demonstrated a high potential for diabetic wound healing, where senescence, ferroptosis, and STING signaling pathways may be potential targets.


Inflammation , Metal-Organic Frameworks , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Reactive Oxygen Species/metabolism , Animals , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Superoxide Dismutase/metabolism , Porosity , Oxidative Stress/drug effects , Signal Transduction/drug effects , RAW 264.7 Cells , Male , Ferroptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Diabetes Mellitus, Experimental , Nanoparticles/chemistry , Humans , Antioxidants/pharmacology , Nanocomposites/chemistry , Membrane Proteins
10.
Biomed Khim ; 70(2): 83-88, 2024 Apr.
Article En | MEDLINE | ID: mdl-38711407

The toxic effect of ethanol on the cerebral cortex and protective effects of omega-3 fatty acids against this neurotoxicity were investigated. Twenty eight male Wistar-albino rats were divided into 4 groups. Rats of the ethanol and ethanol withdrawal groups were treated with ethanol (6 g/kg/day) for 15 days. Animals of the ethanol+omega-3 group received omega-3 fatty acids (400 mg/kg daily) and ethanol. In rats of the ethanol group SOD activity was lower than in animals of the control group. In rats treated with omega-3 fatty acids along with ethanol SOD, activity increased. GSH-Px activity and MDA levels in animals of all groups were similar. In ethanol treated rats NO levels significantly decreased as compared to the animals of the control group (6.45±0.24 nmol/g vs 11.05±0.53 nmol/g, p.


Cerebral Cortex , Ethanol , Fatty Acids, Omega-3 , Nitric Oxide , Rats, Wistar , Superoxide Dismutase , Animals , Male , Rats , Fatty Acids, Omega-3/pharmacology , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Nitric Oxide/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Antioxidants/pharmacology , Malondialdehyde/metabolism
11.
J Insect Sci ; 24(3)2024 May 01.
Article En | MEDLINE | ID: mdl-38717261

The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.


Glutathione Transferase , Larva , Locomotion , Tenebrio , Zearalenone , Animals , Tenebrio/drug effects , Tenebrio/growth & development , Larva/growth & development , Larva/drug effects , Zearalenone/toxicity , Glutathione Transferase/metabolism , Locomotion/drug effects , Superoxide Dismutase/metabolism , Antioxidants/metabolism
12.
Environ Geochem Health ; 46(6): 197, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696118

Micro/nanoplastics (MNPs) are emerging as environmental pollutants with potential threats to human health. The accumulation of MNPs in the body can cause oxidative stress and increase the risk of cardiovascular disease (CVD). With the aim to systematically evaluate the extent of MNPs-induced oxidative damage and serum biochemical parameters in rats and mice, a total of 36 eligible articles were included in this meta-analysis study. The results reported that MNPs can significantly increase the levels of oxidants such as reactive oxygen species (ROS) and malondialdehyde (MDA) (P < 0.05), and resulted in notable increase in serum biochemical parameters including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P < 0.05). Conversely, MNPs significantly reduced levels of antioxidants such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT) (P < 0.05). Subgroup analysis revealed that smaller MNPs with oral administration and prolonged treatment, were associated with more pronounced oxidative stress and enhanced serum biochemical parameters alteration. In addition, after affected by MNPs, the levels of ALT and AST in liver group (SMD = 2.26, 95% CI = [1.59, 2.94] and SMD = 3.10, 95% CI = [1.25, 4.94]) were higher than those in other organs. These comprehensive results provide a scientific foundation for devising strategies to prevent MNPs-induced damage, contributing to solution of this environmental and health challenge.


Oxidative Stress , Animals , Oxidative Stress/drug effects , Rats , Mice , Aspartate Aminotransferases/blood , Microplastics/toxicity , Alanine Transaminase/blood , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Liver/drug effects , Liver/metabolism , Environmental Pollutants/toxicity , Nanoparticles , Malondialdehyde/blood , Superoxide Dismutase/metabolism
13.
Front Endocrinol (Lausanne) ; 15: 1371220, 2024.
Article En | MEDLINE | ID: mdl-38737551

Background and objective: Aberrant epigenetic regulation and increased oxidative stress in the placenta play a significant role in placental pathophysiology and fetal programming in preeclampsia, a hypertensive disorder in human pregnancy. The purpose of the study is to investigate if hypermethylation of histone H3K9 occurs in placental trophoblasts from preeclampsia. Methods: Trophoblasts were isolated and cultured from 14 placentas, 7 from normotensive pregnant women and 7 from preeclamptic pregnancies. Methylated H3K9 expression and antioxidant superoxide dismutase expression were determined by Western blot. We also examined consequences of oxidative stress and the downstream effects of histone methyltransferase inhibition on H3K9 expression associated with antioxidant CuZn-SOD and Mn-SOD expression in placental trophoblasts. Results: We found that expression of mono-, di-, and tri-methylation of histone H3 lysine 9 (H3K9me1, H3K9me2 and H3K9me3) was significantly increased, p<0.01, which correlated with downregulation of antioxidant superoxide dismutase CuZn-SOD and Mn-SOD expression, in trophoblasts from preeclamptic placentas compared to those from uncomplicated control placentas. We further demonstrated hypoxia could promote histone H3K9 methylation in placental trophoblasts, and hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression was reversible when hypoxic condition was removed. In addition, we also uncovered that inhibition of methyltransferase not only prevented hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression, but also abolished hypoxia-induced downregulation of CuZn-SOD and Mn-SOD expression in placental trophoblasts. Conclusions: These findings are noteworthy and provide further evidence that increased oxidative stress in the intrauterine environment is likely a mechanism to induce aberrant histone modification in placental trophoblasts in preeclampsia. Moreover, CuZn-SOD and Mn-SOD expression/activity are possibly H3K9 methylation-dependent in placental trophoblasts, which further suggest that oxidative stress and aberrant histone modification have significant impact on placental trophoblasts/fetal programming in preeclampsia.


Histones , Oxidative Stress , Placenta , Pre-Eclampsia , Trophoblasts , Humans , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pregnancy , Trophoblasts/metabolism , Histones/metabolism , Adult , Placenta/metabolism , Methylation , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , DNA Methylation , Cells, Cultured , Lysine/metabolism
14.
Rev Int Androl ; 22(1): 29-37, 2024 Mar.
Article En | MEDLINE | ID: mdl-38735875

A significant clinical condition known as testicular torsion leads to permanent ischemic damage to the testicular tissue and consequent loss of function in the testicles. In this study, it was aimed to evaluate the protective effects of Astaxanthin (ASTX) on testicular damage in rats with testicular torsion/detorsion in the light of biochemical and histopathological data. Spraque Dawley rats of 21 were randomly divided into three groups; sham, testicular torsion/detorsion (TTD) and astaxanthin + testicular torsion/detorsion (ASTX + TTD). TTD and ASTX + TTD groups underwent testicular torsion for 2 hours and then detorsion for 4 hours. Rats in the ASTX + TTD group were given 1 mg/kg/day astaxanthin by oral gavage for 7 days before torsion. Following the detorsion process, oxidative stress parameters and histopathological changes in testicular tissue were evaluated. Malondialdehyde (MDA) and total oxidant status (TOS) levels were significantly decreased in the ASTX group compared to the TTD group, while superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS) levels were increased (p < 0.05). Moreover, histopathological changes were significantly reduced in the group given ASTX (p < 0.0001). It was determined that ASTX administration increased Beclin-1 immunoreactivity in ischemic testicular tissue, while decreasing caspase-3 immunoreactivity (p < 0.0001). Our study is the first to investigate the antiautophagic and antiapoptotic properties of astaxanthin after testicular torsion/detorsion based on the close relationship of Beclin-1 and caspase-3 in ischemic tissues. Our results clearly demonstrate the protective effects of ASTX against ischemic damage in testicular tissue. In ischemic testicular tissue, ASTX contributes to the survival of cells by inducing autophagy and inhibiting the apoptosis.


Antioxidants , Autophagy , Oxidative Stress , Rats, Sprague-Dawley , Spermatic Cord Torsion , Testis , Xanthophylls , Male , Animals , Xanthophylls/pharmacology , Xanthophylls/administration & dosage , Autophagy/drug effects , Rats , Testis/drug effects , Testis/pathology , Testis/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/administration & dosage , Apoptosis/drug effects , Malondialdehyde/metabolism , Random Allocation , Reperfusion Injury/prevention & control , Superoxide Dismutase/metabolism , Glutathione/metabolism
15.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673932

Platinum-containing chemotherapeutic drugs are efficacious in many forms of cancer but are dose-restricted by serious side effects, of which peripheral neuropathy induced by oxidative-nitrosative-stress-mediated chain reactions is most disturbing. Recently, hope has been raised regarding the catalytic antioxidants mangafodipir (MnDPDP) and calmangafodipir [Ca4Mn(DPDP)5; PledOx®], which by mimicking mitochondrial manganese superoxide dismutase (MnSOD) may be expected to overcome oxaliplatin-associated chemotherapy-induced peripheral neuropathy (CIPN). Unfortunately, two recent phase III studies (POLAR A and M trials) applying Ca4Mn(DPDP)5 in colorectal cancer (CRC) patients receiving multiple cycles of FOLFOX6 (5-FU + oxaliplatin) failed to demonstrate efficacy. Instead of an anticipated 50% reduction in the incidence of CIPN in patients co-treated with Ca4Mn(DPDP)5, a statistically significant increase of about 50% was seen. The current article deals with confusing differences between early and positive findings with MnDPDP in comparison to the recent findings with Ca4Mn(DPDP)5. The POLAR failure may also reveal important mechanisms behind oxaliplatin-associated CIPN itself. Thus, exacerbated neurotoxicity in patients receiving Ca4Mn(DPDP)5 may be explained by redox interactions between Pt2+ and Mn2+ and subtle oxidative-nitrosative chain reactions. In peripheral sensory nerves, Pt2+ presumably leads to oxidation of the Mn2+ from Ca4Mn(DPDP)5 as well as from Mn2+ in MnSOD and other endogenous sources. Thereafter, Mn3+ may be oxidized by peroxynitrite (ONOO-) into Mn4+, which drives site-specific nitration of tyrosine (Tyr) 34 in the MnSOD enzyme. Conformational changes of MnSOD then lead to the closure of the superoxide (O2•-) access channel. A similar metal-driven nitration of Tyr74 in cytochrome c will cause an irreversible disruption of electron transport. Altogether, these events may uncover important steps in the mechanism behind Pt2+-associated CIPN. There is little doubt that the efficacy of MnDPDP and its therapeutic improved counterpart Ca4Mn(DPDP)5 mainly depends on their MnSOD-mimetic activity when it comes to their potential use as rescue medicines during, e.g., acute myocardial infarction. However, pharmacokinetic considerations suggest that the efficacy of MnDPDP on Pt2+-associated neurotoxicity depends on another action of this drug. Electron paramagnetic resonance (EPR) studies have demonstrated that Pt2+ outcompetes Mn2+ and endogenous Zn2+ in binding to fodipir (DPDP), hence suggesting that the previously reported protective efficacy of MnDPDP against CIPN is a result of chelation and elimination of Pt2+ by DPDP, which in turn suggests that Mn2+ is unnecessary for efficacy when it comes to oxaliplatin-associated CIPN.


Antineoplastic Agents , Manganese , Oxaliplatin , Peripheral Nervous System Diseases , Platinum , Humans , Antineoplastic Agents/adverse effects , Edetic Acid/analogs & derivatives , Manganese/adverse effects , Nitrosative Stress/drug effects , Oxaliplatin/adverse effects , Oxaliplatin/pharmacology , Oxidative Stress/drug effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Platinum/adverse effects , Pyridoxal Phosphate/analogs & derivatives , Pyridoxal Phosphate/pharmacology , Pyridoxal Phosphate/metabolism , Superoxide Dismutase/metabolism , Clinical Trials, Phase III as Topic
16.
Chemosphere ; 357: 141953, 2024 Jun.
Article En | MEDLINE | ID: mdl-38614395

The effects of culture filtrate of Alexandrium tamarense on Prorocentrum donghaiense and Heterosigma akashiwo were investigated, including determination of algal density, photosynthesis, intracellular enzyme content and activity. The filtrate of A. tamarense had a stronger inhibitory effect on P. donghaiense than H. akashiwo, and the inhibitory effect decreased with higher temperature treatment of the filtrate. Instantaneous fluorescence (Ft) and maximum quantum yield of photosystem II (Fv/Fm) values of both kinds of target algae were reduced as exposed to the filtrate of A. tamarense, which proved that allelopathy could inhibit the normal operation of photosynthetic system. The increase of Malondialdehyde (MDA) content of the two kinds of target algae indicated that the cell membrane was seriously damaged by allelochemicals released by A. tamarense. The different responses of Superoxide Dismutase (SOD) and Catalase (CAT) activity in two kinds of target algae demonstrated the complexity and diversity of allelopathic mechanism. The filtrate of A. tamarense also influenced the metabolic function (ATPases) of P. donghaiense and H. akashiwo, and the influence on P. donghaiense was greater. Liquid-liquid extraction was used to extract and isolate allelochemicals from the filtrate of A. tamarense. It was found that only component I with molecular weight of 424.2573 and 434.2857 could inhibit the growth of P. donghaiense by HPLC-MS.


Allelopathy , Catalase , Dinoflagellida , Malondialdehyde , Pheromones , Photosynthesis , Dinoflagellida/physiology , Pheromones/pharmacology , Malondialdehyde/metabolism , Photosynthesis/drug effects , Catalase/metabolism , Superoxide Dismutase/metabolism , Photosystem II Protein Complex/metabolism
17.
Article En | MEDLINE | ID: mdl-38615808

Biomphalaria straminea is a freshwater gastropod native to South America and used in toxicological assessments. Our aim was to estimate 48 h-LC50 and sub-chronic effects after the exposure to low concentrations of chlorpyrifos as commercial formulation (CF) and active ingredient (AI) on B. straminea adult, embryos and juveniles. Concentrations between 1 and 5000 µg L-1 were chosen for acute exposures and 0.1 and 1 µg L-1 for the sub-chronic one. After 14 days biochemical parameters, viability and sub-populations of hemocytes, reproductive parameters, embryotoxicity and offspring' survival were studied. Egg masses laid between day 12 and 14 were separated to continue the exposure and the embryos were examined daily. Offspring' survival and morphological changes were registered for 14 days after hatching. 48 h-LC50, NOEC and LOEC were similar between CF and AI, however the CF caused more sub-lethal effects. CF but not the AI decreased carboxylesterases, catalase and the proportion of hyalinocytes with respect to the total hemocytes, and increased superoxide dismutase and the % of granulocytes with pseudopods. Also CF caused embryotoxicity probably due to the increase of embryos' membrane permeability. Acetylcholinesterase, superoxide dismutase, hemocytes sub-populations, the time and rate of hatching and juveniles' survival were the most sensitive biomarkers. We emphasize the importance of the assessment of a battery of biomarkers as a useful tool for toxicity studies including reproduction parameters and immunological responses. Also, we highlight the relevance of incorporating the evaluation of formulations in order to not underestimate the effects of pesticides on the environment.


Biomarkers , Biomphalaria , Chlorpyrifos , Embryo, Nonmammalian , Insecticides , Water Pollutants, Chemical , Chlorpyrifos/toxicity , Animals , Biomphalaria/drug effects , Insecticides/toxicity , Biomarkers/metabolism , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Hemocytes/drug effects , Lethal Dose 50 , Reproduction/drug effects , Superoxide Dismutase/metabolism , Catalase/metabolism
18.
Mar Pollut Bull ; 202: 116352, 2024 May.
Article En | MEDLINE | ID: mdl-38604080

Artificial light at night (ALAN) is becoming a widespread stressor in coastal ecosystems, affecting species that rely on natural day/night cycles. Yet, studies examining ALAN effects remain limited, particularly in the case of sessile species. This study assessed the effects of ALAN upon the feeding activity and two molecular indicators in the widespread plumose sea anemone Metridium senile. Anemones were exposed to either natural day/night or ALAN conditions to monitor feeding activity, and tissue samples were collected to quantify proteins and superoxide dismutase (SOD) enzyme concentrations. In day/night conditions, sea anemones showed a circadian rhythm of activity in which feeding occurs primarily at night. This rhythm was altered by ALAN, which turned it into a reduced and more uniform pattern of feeding. Consistently, proteins and SOD concentrations were significantly lower in anemones exposed to ALAN, suggesting that ALAN can be harmful to sea anemones and potentially other marine sessile species.


Light , Sea Anemones , Superoxide Dismutase , Animals , Sea Anemones/physiology , Superoxide Dismutase/metabolism , Feeding Behavior , Circadian Rhythm
19.
Acta Cir Bras ; 39: e391524, 2024.
Article En | MEDLINE | ID: mdl-38629649

PURPOSE: Pre-eclampsia (PE) is a pregnancy-related complication. Eucommia is effective in the treatment of hypertensive disorders in pregnancy, but the specific effects and possible mechanisms of Eucommia granules (EG) in PE remain unknown. The aim of this study was to investigate the effects and possible mechanisms of EG in PE rats. METHODS: Pregnant Sprague Dawley rats were divided into five groups (n = 6): the control group, the model group, the low-dose group, the medium-dose group, and the high-dose group of EG. The PE model was established by subcutaneous injection of levonitroarginine methyl ester. Saline was given to the blank and model groups, and the Eucommia granules were given by gavage to the remaining groups. Blood pressure and urinary protein were detected. The body length and weight of the pups and the weight of the placenta were recorded. Superoxide dismutase (SOD) activity and levels of malondialdehyde (MDA), placental growth factor (PIGF), and soluble vascular endothelial growth factor receptor-1 (sFIt-1) were measured in the placenta. Pathological changes were observed by hematoxylin-eosin staining. Wnt/ß-catenin pathway-related protein expression was detected using Western blot. RESULTS: Compared with the model group, the PE rats treated with EG had lower blood pressure and urinary protein. The length and weight of the pups and placental weight were increased. Inflammation and necrosis in the placental tissue was improved. SOD level increased, MDA content and sFIt-1/PIGF ratio decreased, and Wnt/ß-catenin pathway-related protein expression level increased. Moreover, the results of EG on PE rats increased with higher doses of EG. CONCLUSIONS: EG may activate the Wnt/ß-catenin pathway and inhibit oxidative stress, inflammation, and vascular endothelial injury in PE rats, thereby improving the perinatal prognosis of preeclamptic rats. EG may inhibit oxidative stress, inflammation, and vascular endothelial injury through activation of the Wnt/ß-catenin pathway in preeclampsia rats, thereby improving perinatal outcomes in PE rats.


Pre-Eclampsia , Pregnancy Complications , Humans , Rats , Female , Pregnancy , Animals , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Placenta , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism , beta Catenin/metabolism , Placenta Growth Factor/metabolism , Placenta Growth Factor/pharmacology , Placenta Growth Factor/therapeutic use , Oxidative Stress , Pregnancy Complications/metabolism , Inflammation/pathology , Superoxide Dismutase/metabolism
20.
Mol Biol Rep ; 51(1): 567, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656394

BACKGROUND: Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS: A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and ß-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION: The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.


3-Hydroxybutyric Acid , Apoptosis , Glucose , Lung Neoplasms , Membrane Potential, Mitochondrial , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidative Stress/drug effects , Glucose/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , A549 Cells , Mitochondria/metabolism , Mitochondria/drug effects , 3-Hydroxybutyric Acid/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Superoxide Dismutase/metabolism , AC133 Antigen/metabolism , AC133 Antigen/genetics
...